skip to main content


Search for: All records

Creators/Authors contains: "Iungo, Giacomo Valerio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increased availability of experimental measurements aiming at probing wind resources and wind turbine operations, machine learning (ML) models are poised to advance our understanding of the physics underpinning the interaction between the atmospheric boundary layer and wind turbine arrays, the generated wakes and their interactions, and wind energy harvesting. However, the majority of the existing ML models for predicting wind turbine wakes merely recreate CFD-simulated data with analogous accuracy but reduced computational costs, thus providing surrogate models rather than enhanced data-enabled physics insights. Although ML-based surrogate models are useful to overcome current limitations associated with the high computational costs of CFD models, using ML to unveil processes from experimental data or enhance modeling capabilities is deemed a potential research direction to pursue. In this letter, we discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations, along with new promising research strategies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models.

     
    more » « less
    Free, publicly-accessible full text available October 23, 2024
  3. Abstract

    Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (𝒪(mm)) up to large energy-containing structures (𝒪(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021–2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.

     
    more » « less
    Free, publicly-accessible full text available November 20, 2024
  4. Recent works on wall-bounded flows have corroborated the coexistence of wall-attached eddies, whose statistical features are predicted through Townsend's attached-eddy hypothesis (AEH), and very-large-scale motions (VLSMs). Furthermore, it has been shown that the presence of wall-attached eddies within the logarithmic layer is linked to the appearance of an inverse-power-law region in the streamwise velocity energy spectra, upon significant separation between outer and viscous scales. In this work, a near-neutral atmospheric surface layer is probed with wind light detection and ranging to investigate the contributions to the streamwise velocity energy associated with wall-attached eddies and VLSMs for a very-high-Reynolds-number boundary layer. Energy and linear coherence spectra (LCS) of the streamwise velocity are interrogated to identify the spectral boundaries associated with eddies of different typologies. Inspired by the AEH, an analytical model for the LCS associated with wall-attached eddies is formulated. The experimental results show that the identification of the wall-attached-eddy energy contribution through the analysis of the energy spectra leads to an underestimate of the associated spectral range, maximum height attained and turbulence intensity. This feature is due to the overlap of the energy associated with VLSMs obscuring the inverse-power-law region. The LCS analysis estimates wall-attached eddies with a streamwise/wall-normal ratio of about 14.3 attaining a height of about 30 % of the outer scale of turbulence.

     
    more » « less
  5. Summary

    Over the last decades, pulsed light detection and ranging (LiDAR) anemometry has gained growing attention in probing the marine atmospheric boundary layer (MABL) due to its ease of use combined with compelling spatio‐temporal resolution. Among several scanning strategies, fixed scans represent the most prominent choice when high‐frequency resolution is required; however, no information is provided about the spatial heterogeneity of the wind field. On the other hand, volumetric scans allow for the characterization of the spatial variability of the wind field with much lower temporal resolution than fixed scans. In this work, the recently developed “LiDAR Statistical Barnes Objective Analysis” (LiSBOA) algorithm for the optimal design of LiDAR scans and retrieval of wind velocity statistics is tailored for applications in the MABL. The LiDAR data, collected during a recent experimental campaign over Lake Lavon in Texas, show a good consistency of mean velocity profiles between fixed and LiSBOA‐interpolated volumetric data, thus further encouraging the use of coupled fixed and volumetric scans for simultaneous characterizations of wind turbulence statistics along the vertical direction and volumetric heterogeneity of the wind field.

     
    more » « less
  6. Abstract

    Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub‐height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.

     
    more » « less
  7. null (Ed.)
    Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within each range gate, generally modeled as a convolution between the actual velocity projected along the LiDAR line-of-sight and a weighting function representing the energy distribution of the laser pulse along the range gate. As a result, the spectral energy of the turbulent velocity fluctuations is damped within the inertial sub-range with respective reduction of the velocity variance, and, thus, not allowing to take advantage of the achieved spatio-temporal resolution of the LiDAR technology. In this article, we propose to correct this turbulent energy damping on the LiDAR measurements by reversing the effect of a low-pass filter, which can be estimated directly from the LiDAR measurements. LiDAR data acquired from three different field campaigns are analyzed to describe the proposed technique, investigate the variability of the filter parameters and, for one dataset, assess the procedure for spectral LiDAR correction against sonic anemometer data. It is found that the order of the low-pass filter used for modeling the energy damping on the LiDAR velocity measurements has negligible effects on the correction of the second-order statistics of the wind velocity. In contrast, its cutoff frequency plays a significant role in the spectral correction encompassing the smoothing effects connected with the LiDAR gate length. 
    more » « less
  8. null (Ed.)
    A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of the velocity statistical moments is proposed. LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional space, and it is a suitable technique for the evaluation over a structured Cartesian grid of the statistics of scalar fields sampled through scanning lidars. LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. This revisited theoretical framework for the Barnes objective analysis enables the formulation of guidelines for the optimal design of lidar experiments and efficient application of LiSBOA for the postprocessing of lidar measurements. The optimal design of lidar scans is formulated as a two-cost-function optimization problem, including the minimization of the percentage of the measurement volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field. The optimal design of the lidar scans also guides the selection of the smoothing parameter and the total number of iterations to use for the Barnes scheme. LiSBOA is assessed against a numerical data set generated using the virtual lidar technique applied to the data obtained from a large eddy simulation (LES). The optimal sampling parameters for a scanning Doppler pulsed wind lidar are retrieved through LiSBOA, and then the estimated statistics are compared with those of the original LES data set, showing a maximum error of about 4 % for both mean velocity and turbulence intensity. 
    more » « less
  9. null (Ed.)
    Abstract. The LiDAR Statistical Barnes Objective Analysis (LiSBOA), presented in Letizia et al. (2021), is a procedure for the optimal design of lidar scans and calculations over a Cartesian grid of the statistical moments of the velocity field. Lidar data collected during a field campaign conducted at a wind farm in complex terrain are analyzed through LiSBOA for two different tests. For both case studies, LiSBOA is leveraged for the optimization of the azimuthal step of the lidar and the retrieval of the mean equivalent velocity and turbulence intensity fields. In the first case, the wake velocity statistics of four utility-scale turbines are reconstructed on a 3D grid, showing LiSBOA's ability to capture complex flow features, such as high-speed jets around the nacelle and the wake turbulent-shear layers. For the second case, the statistics of the wakes generated by four interacting turbines are calculated over a 2D Cartesian grid and compared to the measurements provided by the nacelle-mounted anemometers. Maximum discrepancies, as low as 3 % for the mean velocity (with respect to the free stream velocity) and turbulence intensity (in absolute terms), endorse the application of LiSBOA for lidar-based wind resource assessment and diagnostic surveys for wind farms. 
    more » « less